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Abstract 

In this paper we display a practical approach adopted for the 
formal verification of Fairisle ATM (Asynchronous Transfer 
Mode) switch port controller using model checking. The ATM 
port controller is part of the Cambridge Fairisle ATM network 
and plays a key role in the ATM switching process. In particular, 
we present our experience on the model checking of the ATM port 
controller using the VIS tool from UC Berkeley. To this end, we 
successfully modeled the port controller behavior and structure in 
Verilog HDL, established the necessary verification environments 
and verified a number of relevant temporal properties on the port 
controller.    
 

1. INTRODUCTION 
With the increasing reliance of digital systems, design 

errors can cause serious failures, resulting in the loss of 
time, money, and long design cycle. Large amounts of 
effort are required to correct design bugs, especially when 
the error is discovered late in the design process. For these 
reasons, we need approaches that enable us to discover 
errors and validate designs as early as possible. 
Conventionally, simulation has been the main debugging 
technique. However, due to the increasing complexity of 
digital systems, it is becoming impossible to simulate large 
designs adequately. Therefore, there has been a recent 
surge of interest in formal verification  [3].  

One very successful formal verification approach is 
model checking  [3]  which enables to check a design model 
against temporal logic properties. Model checking is an 
automatic technique for verifying finite-state reactive 
systems, such as sequential circuit designs and 
communication protocols. Specifications are expressed in a 
propositional temporal logic, and the reactive system is 
modeled as a state-transition graph. However, the 
specifications are not always easy to be expressed in the 
given temporal logic. In this paper, we display practical 
approaches to represent the specification in the temporal 
logic and present our experience on the model checking of 

the Fairisle ATM (Asynchronous Transfer Mode  [2]) port 
controller using the VIS (Verification Interacting with 
Synthesis)  [1] tool from UC Berkeley.  

The Fairisle port controller ( Fig 1) is a real design from 
Cambridge University. It is at the heart of Fairisle ATM 
network switch  [4].  In the ingress  [2], the port controller 
receives ATM cells from the transmission board and 
performs the ATM switching on the received cells. It also 
sends the ATM cells to the switch fabric  [5].  In the egress 
 [2], the port controller receives ATM cells from the fabric 
and sends the acknowledgment signals to the switch fabric. 
The port controller assigns priorities to ATM cells, by 
preloading priority bits into the memory. The priority bit 
will be used for arbitration in the switch fabric.  
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Fig 1. The Fairisle ATM switch 

In this work, we modeled the port controller at the RTL 
(Register Transfer Level) following some documentation 
and incomplete structural code we have obtained from 
Cambridge. The RTL description of the port controller is 
written in Verilog HDL (Hardware Description Language). 
To verify the port controller in VIS, we established a 
proper environment, and defined a number of related CTL 
(Computation Tree Logic [3]) properties.  
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In following sections, we will introduce the behavior 
and structure of the port controller in Section 2. Section 3 
describes the properties we established on the port 
controller. Section 4 illustrates a practical method on 
verifying CTL properties using model checking, and 
Section 5 summarizes the paper.  

 

2. THE FAIRISLE PORT CONTROLLER 
 Fig 2 shows the format of an ATM cell. Received cells 

have 52 bytes: 48 data bytes, 2 VCI (Virtual Channel 
Identifier) bytes and 2 FAS (Frame Assignment Sequence) 
bytes. Transmitted cells have 54 bytes: 48 data bytes, 1 
Fabric Routing Byte (FRB), 1 Port controller Routing Byte 
(PRB), 2 VCI bytes and 2 FA bytes. 
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Fig 2. Format of received and transmitted cells 

2.1. Behavior of the Fairisle Port Controller 

The Fairsile port controller consists of input port 
controller and output port controller. The input port 
controller receives ATM cells from the transmission board, 
and writes them into the memory at an address based on the 
value of the VCI  [2]. In addition, the input port controller 
reads ATM cells out of the memory and transmits them 
into the switch fabric. Once it receives positive 
acknowledgement signals, the input port controller will 
continue transmitting data; otherwise, it will stop sending 
data. The output port controller receives data cells from the 
fabric, and sends acknowledgment signals back to the 
fabric.  If the output port controller receives a data cell, it 
gives a positive acknowledgment signal; otherwise, it sends 
a negative acknowledgment.  

The input port controller always monitors the framestart 
signal ( Fig 1). On an active framestart signal, the input port 
controller will assert a write enable signal to the memory. 
After the framestart signal is received, the input port 
controller will latch the first two bytes which build the VCI 

field of the receiving cell. ( Fig 1) is the conversion between 
the VCI of the receiving cell and its memory location, c 
means the column address and r means the row address.  
The decimal digit indicates the position in the binary 
address (e.g. r4 means bit 4 of the row address). 

On the other hand, when the framestart signal is asserted 
and the input port controller has a cell to send, the input 
port controller will read the data cell from the memory into 
the fabric. After a certain number of clock cycles, if the 
input port controller receives the positive acknowledgment 
signal through the switch fabric, it will continue sending 
the ATM cell; otherwise, it will stop the transmission. 

 

Table 1. VCI to memory location conversion 

VCI 0 byte 0 1 2 3 4 5 6 7 

addr_r r1 r2 r3 r4 r5 r6 r7 r8 

VCI 1 byte 0 1 2 3 4 5 6 7 

addr_r - - - - c6 c7 c8 r0 

 

While the input port controller receives data from the 
transmission board and transmits the data into the fabric, 
the output port controller receives data from the switch 
fabric and gives the acknowledgment signal to the input 
port controller through the switch fabric. After the 
framestart signal is asserted, the output port controller will 
detect the active bit in the port controller header. If the 
active bit is asserted, the output port controller will 
generate the positive acknowledgment signal which will be 
transmitted into the input port controller through the fabric; 
otherwise, the output port controller will generate the 
negative acknowledgment signal. If the output port 
controller receives a data cell, it will write the data into the 
output FIFO, and the first byte of the data, which is the 
Port controller Routing Byte (PRB), will be stripped. 

2.2. Structure of the Fairisle Port Controller 

 Fig 3 shows the structure of the port controller. The 
signals ip_mem_data and  mem_ip_data mean the data 
outputs to the cell memory and the data inputs from the cell 
memory, respectively. Both signals have 8-bit bus width. 
The signals ip_mem_wr_en and ip_mem_rd_req are the 
memory write enable and memory read request signals, 
respectively. The memory row and column addresses are 
provided by ip_mem_addr_r and ip_mem_addr_c, 
respectively. The rx_ip_data is an 8-bit data bus which is 
the data inputs from the transmission board. The signals 
rx_rd_req and rx_ip_soc indicate cell availability in the 
transmission board and the start of a cell, respectively. The 
rx_ip_soc signal corresponds to the framestart mentioned 
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above. The signal ip_rx_wr_en demonstrates whether the 
input port controller is able to accept a cell or not. The 
ip_fab_data is an 8-bit data bus which transfers data from 
the input port controller to the fabric.  
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Fig 3. The structure of the port controller 

The fab_ip_ack is the acknowledgment signal which 
indicates whether the current cell succeeded the transfer to 
the destined output port controller. The fab_op_data is an 
8-bit data inputs from the fabric to the port controller and 
the fab_op_ack  is the acknowledgment signal generated by 
this latter. The op_fifo_data is an 8-bit datapath from the 
output port controller to the FIFO. The op_fifo_wr_en is 
the write enable signal for the output FIFO. The signal 
op_fifo_soc indicates the start of  a cell, and it is  asserted  
before the first byte data transfer.  The npc-rst_n is the 
reset signal. 

Inside the port controller, there are two control registers 
(ctr_id and ctr_sz) and one status register (ip_empty). The 
ctr_id disables the inputs when it is asserted. The register 
ctr_sz is for debugging purposes. The register ip_empty is 
used to indicate the status of the port controller. 

 

3. PROPERTIES OF THE PORT 
CONTROLLER 

Based on the expected function of the port controller, 
we defined the following six major properties.  
Property 1: The Fairisle port controller will be reset 
properly when the reset signal (npc_rst_n) is zero .  
Property 2: When the input port controller can accept a 
cell, the transmission board has a cell to send, and the input 
port controller is in debugging state (ctr_sz = 1), then the 
cell will be transferred to the input port controller and 
stored in the memory at the right location.   
Property 3: When the input port controller can accept a 
cell, the transmission board has a cell to send, and the input 

port controller is in the normal operation state (ctr_sz=0), 
then the cell will be transferred to the input port controller 
and stored in the memory at the right location.   
Property 4: When the input port controller has a cell to 
send, it will send the cell to the fabric. If the input port 
controller does not receive a positive acknowledgment 
signal, it will stop sending the cell; otherwise, it will send 
the data cell completely.  
Property 5: The memory cannot be read and write at the 
same time.  
Property 6: The output port controller will send an 
acknowledgment signal after it detects an incoming cell.  

Each of the above properties will be described formally in 
CTL. Due to limited space, we will report in detail the 
formal specification and verification of one sample 
property, Property 3, in next section. The CTL 
specification of the other properties can be found in [6].  
 

4. SPECIFICATION AND VERIFICATION 
In this section we will demonstrate by example (using 

Property 3) how the specification and verification is 
processed in a practical way. Property 3 has the following 
assumptions:  

1. The input port controller can accept a cell, 
expressed as “ip_empty = 1”;  

2. The transmission board has a cell to send, 
expressed as “rx_ip_rd_req = 1”; 

3. The port controller is in normal operation state, 
expressed as “ctr_sz = 0” and “ctr_id = 0”; 

4. The port controller receives the framestart signal, 
expressed as “rx_ip_soc = 1”; 

5. The input port controller is not in reset state, and it 
can be expressed as “npc_rst_n = 1” . 

The input port controller first detects the signals 
ip_empty, rx_ip_rd_req, ctr_sz, npc_rst_n, and ctr_id. If 
these signals are satisfied with the above assumptions, the 
port controller will start monitoring rx_ip_soc in the 
following clock cycles. If the rx_ip_soc is asserted as well, 
the cell is transferred to the port controller. This behavior 
can be expressed formally in CTL as  the follows, where 
the symbols “*”, “+”, “->” represent logical and, or and 
implication, respectively, and the symbols “AG” and “AX” 
are temporal operators meaning for all paths in all states 
and for all paths in next state, respectively. 
AG(npc_rst_n=1 * ctl_id=0 * ctr_sz=0 * ip_empty=1 
* rx_ip_rd_req=1 * rx_ip_soc=1  -> AX AX 
ip_mem_addr_r[8:1] == rx_ip_data) 

The above CTL expression is not fully correct because the 
assumptions (ip_empty=1 and  rx_ip_rd_req=1)  do not happen at 
the same state as the fourth assumption (rx_ip_soc=1). Therefore, 
we need to put the assumptions into the environment. In fact, 
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Step2. Verify the conclusions. because the port controller has a cyclic period synchronized by 
the rx_ip_soc signal whose period is 64 clock cycles, we could 
establish an environment state machine with 64 states ( Fig 4). 

In Property 3, we have to verify two aspects: one is to 
ensure that two bytes of VCI become the memory address 
and the memory address is incremented by 1 per byte data 
transfer. And the other is to verify that the data is 
transferred from transmission board to the memory with 
one clock cycle delay and the memory write enable signal 
is asserted during the data transfer. The formulas (4) and 
(5) below specify that the two bytes of VCI are transferred 
to be memory address correctly.  

 

Fig 4. Environment machine for the port controller 

The Verilog code for the above environment of the port 
controller for Property 3 is shown in Fig. 5. In this 
environment, the correct assumption npc_rst_n=1, 
ctl_id=0, ctr_sz=0, ip_empty=1, rx_ip_rd_req=1, and 
rx_ip_soc=1 are set properly. 

AG(state=S5 -> ip_mem_addr_r[8:1]==rx_ip_data_s4)  (4) 

AG(state=S6 -> ip_mem_addr_r[8:1]== rx_ip_data_s4 
* ip_mem_addr_r[0]==rx_ip_data_s5[7] * 
ip_mem_addr_c[8:6]==rx_ip_data_s5[6:4] * 
ip_mem_addr_c[5:0]=6’b000100)                 (5)  

  1   typedef num {S1, S2, S3, …, Si, … , S64} state;  
  2   assign rx_ip_data_ran = $ND(0, 1, 2, …, 255);  
  3   always @ (posedge clock) begin  
  4   case (state) 
  5 S64: state = S1; 
  6 S1: state = S2;   
  7        S2: state = S3; 
  8 S3: state = S4;   
  9           …… 
10       Si: state = Si+1;    
11         ……  
12 S63: state = S64; 
13   endcase; 

       14   if (state== S1) 
15 framestart = 1; 
16   else 
17 framestart = 0; 
18   if (state == S3)  
19  rx_ip_soc = 1; 
20   else 
21 rx_ip_soc = 0; 
22   ip_empty = 1; 
23   rx_ip_rd_req=1 ; 
24   ctr_sz = 0; 
25   ctr_id = 0; 
26   npc_rst_n = 1; 
27   rx_ip_data = rx_ip_data_ran; 
28   if (state = S4)  rx_ip_data_s4 = rx_ip_data_ran; 
29   else if (state=S5) rx_ip_data_s5 = rx_ip_data_ran; 
30   else if (state=S6) rx_ip_data_s6 = rx_ip_data_ran; 
31   end 

 

The correct memory addresses increment can be 
specified by formulas (6), (7), (8) and (9) below.  Due to 
the space limitation, the CTL properties for the address 
increment between S8 and S56 are not listed in here, but 
they are very similar to (7) and (8).   

AG(state=S7 -> ip_mem_addr_r[8:1]== rx_ip_data_s4 
* ip_mem_addr_r[0]==rx_ip_data_s5[7] * 
ip_mem_addr_c[8:6]==rx_ip_data_s5[6:4] * 
ip_mem_addr_c[5:0]=6’b000100)                  (6) 

AG(state=S8 -> ip_mem_addr_r[8:1]==rx_ip_data_s4 * 
ip_mem_addr_r[0]==rx_ip_data_s5[7] * 
ip_mem_addr_c[8:6]==rx_ip_data_s5[6:4] * 
ip_mem_addr_c[5:0]=6’b000101)                (7) 

AG(state=S56 -> ip_mem_addr_r[8:1]==rx_ip_data_s4 
* ip_mem_addr_r[0]==rx_ip_data_s5[7] * 
ip_mem_addr_c[8:6]==rx_ip_data_s5[6:4] * 
ip_mem_addr_c[5:0]= 6’b110101)             (8) 

AG(state=S57 + …… +  state=S64 -> 
ip_mem_addr_r[8:1]==rx_ip_data_s4 * 
ip_mem_addr_r[0]==rx_ip_data_s5[7] * 
ip_mem_addr_c[8:6]==rx_ip_data_s5[6:4] * 
ip_mem_addr_c[5:0] = 6’b000000)            (9) 

Next, we verify that the data is transferred from the 
transmission board to the memory with one clock cycle 
delay and the memory write enable signal is asserted 
during data transfer process. This sub-property involves 
two signals. One is the memory write enable signal 
(ip_mem_wr_en) and the other is the data output signal 
(ip_mem_data). The ip_mem_wr_en signal, which should 
be asserted during the data transfer period (S7 to S56), is 
expressed by formulas (10) and (11) below. Also during 
the data transfer period, the ip_mem_data should equal the 
value of rx_ip_data with one clock cycle delay. The first 
and last byte data transfers are represented by formulas 
(12) and (13) below. Due to the space limitation, the CTL 
properties for the rest of data transfer are not enumerated in 
here, but they are very similar to (12) and (13).  

Fig 5. Verilog code of Property 3 environment  

Next, we divide the verification into the two steps. The 
first step is to verify whether the environment represents 
the assumption, and the second step is to check if the 
conclusion is valid. 

Step 1. Verify the assumption  
The five assumptions are expressed using the following 
CTL expressions:  
 
AG(npc_rst_n=1 * ctr_id=0 * ctr_sz=0)      (1) 
AG(state=S1 -> ip_empty =1 * rx_ip_rd_req=1)   (2) 
AG(state=S3 -> rx_ip_soc=1)               (3) 
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AG(state=S1 + state=S2 + … + state=S6 + state=S57 
+ … + state=S64 -> ip_mem_wr_en=0)  (10) 

AG(state=S7 + state=S8 + … + state=S56 -> 
ip_mem_wr_en=1)                   (11) 

AG(state=S7 -> ip_mem_data==rx_ip_data_s6) (12) 

AG(state=S56 -> ip_mem_data==rx_ip_data_s55) (13) 

Using the established environment and combining the 
property assumptions and conclusions, Property 3 is 
successfully verified through model checking in VIS. 
Following the above method, all other 5 properties of the 
port controller have been similarly specified and verified. 
Experimental results on the model checking of all 6 
properties are shown in  Table 2, including CPU time, 
memory usage and number of BDD nodes generated. The 
experiments were performed on a Sun Ultra Sparc 
(300MHz/500 MB) machine. 

 

Table 2. Model checking experiment results 

Properties CPU time 
(sec) 

Memory 
usage (MB) 

BDD nodes 
allocated (K) 

Property 1 52 92 203,493 

Property 2 256 198 284,563 

Property 3 209 156 293,354 

Property 4 378 201 304,731 

Property 5 34 77 153,980 

Property 6 76 89 197,091 

5. CONCLUSION 
In this paper, we have presented the modeling and 

formal verification by model checking of an ATM switch 
port controller. This is a real design of a 
telecommunications component used in the Cambridge 
Fairisle ATM network. While some specification properties 
cannot be concisely expressed using single temporal logic 
formulas, we have shown how we make use of an 
environment state machine to enable a proper specification. 
To enable the model checking process, properties are 
further subdivided into a set of assumption and conclusion 
subformulas which are combined by conjunction. Using 
such an approach, we succeeded the model checking of all 
specification properties of the port controller within the 
reasonable time. The method presented could be enough in 
order to verify larger designs. To this end, we may have to 
apply some more advanced techniques, such as symmetry 
reduction or compositional verification [5].  
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