
MODELING AND VERIFICATION OF AN ATM PORT
CONTROLLER IN VIS

Jianping Lu and Sofiène Tahar
Dept. of ECE, Concordia University
{jianping, tahar}@ece.concordia.ca

Abstract

In this paper we display a practical approach adopted for the
formal verification of Fairisle ATM (Asynchronous Transfer
Mode) switch port controller using model checking. The ATM
port controller is part of the Cambridge Fairisle ATM network
and plays a key role in the ATM switching process. In particular,
we present our experience on the model checking of the ATM port
controller using the VIS tool from UC Berkeley. To this end, we
successfully modeled the port controller behavior and structure in
Verilog HDL, established the necessary verification environments
and verified a number of relevant temporal properties on the port
controller.

1. INTRODUCTION
With the increasing reliance of digital systems, design

errors can cause serious failures, resulting in the loss of
time, money, and long design cycle. Large amounts of
effort are required to correct design bugs, especially when
the error is discovered late in the design process. For these
reasons, we need approaches that enable us to discover
errors and validate designs as early as possible.
Conventionally, simulation has been the main debugging
technique. However, due to the increasing complexity of
digital systems, it is becoming impossible to simulate large
designs adequately. Therefore, there has been a recent
surge of interest in formal verification [3].

One very successful formal verification approach is
model checking [3] which enables to check a design model
against temporal logic properties. Model checking is an
automatic technique for verifying finite-state reactive
systems, such as sequential circuit designs and
communication protocols. Specifications are expressed in a
propositional temporal logic, and the reactive system is
modeled as a state-transition graph. However, the
specifications are not always easy to be expressed in the
given temporal logic. In this paper, we display practical
approaches to represent the specification in the temporal
logic and present our experience on the model checking of

the Fairisle ATM (Asynchronous Transfer Mode [2]) port
controller using the VIS (Verification Interacting with
Synthesis) [1] tool from UC Berkeley.

The Fairisle port controller (Fig 1) is a real design from
Cambridge University. It is at the heart of Fairisle ATM
network switch [4]. In the ingress [2], the port controller
receives ATM cells from the transmission board and
performs the ATM switching on the received cells. It also
sends the ATM cells to the switch fabric [5]. In the egress
 [2], the port controller receives ATM cells from the fabric
and sends the acknowledgment signals to the switch fabric.
The port controller assigns priorities to ATM cells, by
preloading priority bits into the memory. The priority bit
will be used for arbitration in the switch fabric.

ct
r_

sz

ct
r_

id

op controller op cell
counter

ip controller
ip cell

controller

address
accumulator

framestart

Input Port Controller

Output Port Controller
FIFO

Switch Fabric

DRAM

Transmission
Board

Fig 1. The Fairisle ATM switch

In this work, we modeled the port controller at the RTL
(Register Transfer Level) following some documentation
and incomplete structural code we have obtained from
Cambridge. The RTL description of the port controller is
written in Verilog HDL (Hardware Description Language).
To verify the port controller in VIS, we established a
proper environment, and defined a number of related CTL
(Computation Tree Logic [3]) properties.

CCECE 2003 - CCGEI 2003, Montréal, May/mai 2003
0-7803-7781-8/03/$17.00 © 2003 IEEE

- 001 -

In following sections, we will introduce the behavior
and structure of the port controller in Section 2. Section 3
describes the properties we established on the port
controller. Section 4 illustrates a practical method on
verifying CTL properties using model checking, and
Section 5 summarizes the paper.

2. THE FAIRISLE PORT CONTROLLER
 Fig 2 shows the format of an ATM cell. Received cells

have 52 bytes: 48 data bytes, 2 VCI (Virtual Channel
Identifier) bytes and 2 FAS (Frame Assignment Sequence)
bytes. Transmitted cells have 54 bytes: 48 data bytes, 1
Fabric Routing Byte (FRB), 1 Port controller Routing Byte
(PRB), 2 VCI bytes and 2 FA bytes.

Memory setup via CPU Interface

FRB PRB NEW
VC10

NEW
VC11

FAS0PRB

FAS1

0000000

 Received Cell

FRB FAS1

FAS0

FAS0VC11VC10 FAS1

NEW
VC11

NEW
VC10

VC11VC10 Data

VCI used as memory lookup

Data

 Cell for Transmission

Data 0 0

 64 bytes

 48 bytes

 48 bytes

Fig 2. Format of received and transmitted cells

2.1. Behavior of the Fairisle Port Controller

The Fairsile port controller consists of input port
controller and output port controller. The input port
controller receives ATM cells from the transmission board,
and writes them into the memory at an address based on the
value of the VCI [2]. In addition, the input port controller
reads ATM cells out of the memory and transmits them
into the switch fabric. Once it receives positive
acknowledgement signals, the input port controller will
continue transmitting data; otherwise, it will stop sending
data. The output port controller receives data cells from the
fabric, and sends acknowledgment signals back to the
fabric. If the output port controller receives a data cell, it
gives a positive acknowledgment signal; otherwise, it sends
a negative acknowledgment.

The input port controller always monitors the framestart
signal (Fig 1). On an active framestart signal, the input port
controller will assert a write enable signal to the memory.
After the framestart signal is received, the input port
controller will latch the first two bytes which build the VCI

field of the receiving cell. (Fig 1) is the conversion between
the VCI of the receiving cell and its memory location, c
means the column address and r means the row address.
The decimal digit indicates the position in the binary
address (e.g. r4 means bit 4 of the row address).

On the other hand, when the framestart signal is asserted
and the input port controller has a cell to send, the input
port controller will read the data cell from the memory into
the fabric. After a certain number of clock cycles, if the
input port controller receives the positive acknowledgment
signal through the switch fabric, it will continue sending
the ATM cell; otherwise, it will stop the transmission.

Table 1. VCI to memory location conversion

VCI 0 byte 0 1 2 3 4 5 6 7

addr_r r1 r2 r3 r4 r5 r6 r7 r8

VCI 1 byte 0 1 2 3 4 5 6 7

addr_r - - - - c6 c7 c8 r0

While the input port controller receives data from the
transmission board and transmits the data into the fabric,
the output port controller receives data from the switch
fabric and gives the acknowledgment signal to the input
port controller through the switch fabric. After the
framestart signal is asserted, the output port controller will
detect the active bit in the port controller header. If the
active bit is asserted, the output port controller will
generate the positive acknowledgment signal which will be
transmitted into the input port controller through the fabric;
otherwise, the output port controller will generate the
negative acknowledgment signal. If the output port
controller receives a data cell, it will write the data into the
output FIFO, and the first byte of the data, which is the
Port controller Routing Byte (PRB), will be stripped.

2.2. Structure of the Fairisle Port Controller

 Fig 3 shows the structure of the port controller. The
signals ip_mem_data and mem_ip_data mean the data
outputs to the cell memory and the data inputs from the cell
memory, respectively. Both signals have 8-bit bus width.
The signals ip_mem_wr_en and ip_mem_rd_req are the
memory write enable and memory read request signals,
respectively. The memory row and column addresses are
provided by ip_mem_addr_r and ip_mem_addr_c,
respectively. The rx_ip_data is an 8-bit data bus which is
the data inputs from the transmission board. The signals
rx_rd_req and rx_ip_soc indicate cell availability in the
transmission board and the start of a cell, respectively. The
rx_ip_soc signal corresponds to the framestart mentioned

 - 002 -

above. The signal ip_rx_wr_en demonstrates whether the
input port controller is able to accept a cell or not. The
ip_fab_data is an 8-bit data bus which transfers data from
the input port controller to the fabric.

op controller op cell
counter

ip controller
ip cell

counter

address
accumulator

op_fifo_data
op_fifo_wr_en
op_fifo_soc
framestart

rx_ip_data

rx_rd_req

rx_ip_soc

ip_rx_wr_en

ip
_

m
e

m
_

d
a

ta

ip
_

m
e

m
_

w
r_

e
n

ip
_

m
e

m
_

a
d

d
r_

r

ip
_

m
e

m
_

a
d

d
r_

c

ip
_
m

e
m

_
rd

_
re

q

m
e

m
_

ip
_

d
a

ta

ip_fab_data

fab_ip_ack

fab_op_da

op_fab_ack

ct
r_

sz

ct
r_

id

Input Port Controller

Output Port Controller

Fig 3. The structure of the port controller

The fab_ip_ack is the acknowledgment signal which
indicates whether the current cell succeeded the transfer to
the destined output port controller. The fab_op_data is an
8-bit data inputs from the fabric to the port controller and
the fab_op_ack is the acknowledgment signal generated by
this latter. The op_fifo_data is an 8-bit datapath from the
output port controller to the FIFO. The op_fifo_wr_en is
the write enable signal for the output FIFO. The signal
op_fifo_soc indicates the start of a cell, and it is asserted
before the first byte data transfer. The npc-rst_n is the
reset signal.

Inside the port controller, there are two control registers
(ctr_id and ctr_sz) and one status register (ip_empty). The
ctr_id disables the inputs when it is asserted. The register
ctr_sz is for debugging purposes. The register ip_empty is
used to indicate the status of the port controller.

3. PROPERTIES OF THE PORT
CONTROLLER

Based on the expected function of the port controller,
we defined the following six major properties.
Property 1: The Fairisle port controller will be reset
properly when the reset signal (npc_rst_n) is zero .
Property 2: When the input port controller can accept a
cell, the transmission board has a cell to send, and the input
port controller is in debugging state (ctr_sz = 1), then the
cell will be transferred to the input port controller and
stored in the memory at the right location.
Property 3: When the input port controller can accept a
cell, the transmission board has a cell to send, and the input

port controller is in the normal operation state (ctr_sz=0),
then the cell will be transferred to the input port controller
and stored in the memory at the right location.
Property 4: When the input port controller has a cell to
send, it will send the cell to the fabric. If the input port
controller does not receive a positive acknowledgment
signal, it will stop sending the cell; otherwise, it will send
the data cell completely.
Property 5: The memory cannot be read and write at the
same time.
Property 6: The output port controller will send an
acknowledgment signal after it detects an incoming cell.

Each of the above properties will be described formally in
CTL. Due to limited space, we will report in detail the
formal specification and verification of one sample
property, Property 3, in next section. The CTL
specification of the other properties can be found in [6].

4. SPECIFICATION AND VERIFICATION
In this section we will demonstrate by example (using

Property 3) how the specification and verification is
processed in a practical way. Property 3 has the following
assumptions:

1. The input port controller can accept a cell,
expressed as “ip_empty = 1”;

2. The transmission board has a cell to send,
expressed as “rx_ip_rd_req = 1”;

3. The port controller is in normal operation state,
expressed as “ctr_sz = 0” and “ctr_id = 0”;

4. The port controller receives the framestart signal,
expressed as “rx_ip_soc = 1”;

5. The input port controller is not in reset state, and it
can be expressed as “npc_rst_n = 1” .

The input port controller first detects the signals
ip_empty, rx_ip_rd_req, ctr_sz, npc_rst_n, and ctr_id. If
these signals are satisfied with the above assumptions, the
port controller will start monitoring rx_ip_soc in the
following clock cycles. If the rx_ip_soc is asserted as well,
the cell is transferred to the port controller. This behavior
can be expressed formally in CTL as the follows, where
the symbols “*”, “+”, “->” represent logical and, or and
implication, respectively, and the symbols “AG” and “AX”
are temporal operators meaning for all paths in all states
and for all paths in next state, respectively.
AG(npc_rst_n=1 * ctl_id=0 * ctr_sz=0 * ip_empty=1
* rx_ip_rd_req=1 * rx_ip_soc=1 -> AX AX
ip_mem_addr_r[8:1] == rx_ip_data)

The above CTL expression is not fully correct because the
assumptions (ip_empty=1 and rx_ip_rd_req=1) do not happen at
the same state as the fourth assumption (rx_ip_soc=1). Therefore,
we need to put the assumptions into the environment. In fact,

 - 003 -

Step2. Verify the conclusions. because the port controller has a cyclic period synchronized by
the rx_ip_soc signal whose period is 64 clock cycles, we could
establish an environment state machine with 64 states (Fig 4).

In Property 3, we have to verify two aspects: one is to
ensure that two bytes of VCI become the memory address
and the memory address is incremented by 1 per byte data
transfer. And the other is to verify that the data is
transferred from transmission board to the memory with
one clock cycle delay and the memory write enable signal
is asserted during the data transfer. The formulas (4) and
(5) below specify that the two bytes of VCI are transferred
to be memory address correctly.

Fig 4. Environment machine for the port controller

The Verilog code for the above environment of the port
controller for Property 3 is shown in Fig. 5. In this
environment, the correct assumption npc_rst_n=1,
ctl_id=0, ctr_sz=0, ip_empty=1, rx_ip_rd_req=1, and
rx_ip_soc=1 are set properly.

AG(state=S5 -> ip_mem_addr_r[8:1]==rx_ip_data_s4) (4)

AG(state=S6 -> ip_mem_addr_r[8:1]== rx_ip_data_s4
* ip_mem_addr_r[0]==rx_ip_data_s5[7] *
ip_mem_addr_c[8:6]==rx_ip_data_s5[6:4] *
ip_mem_addr_c[5:0]=6’b000100) (5)

 1 typedef num {S1, S2, S3, …, Si, … , S64} state;
 2 assign rx_ip_data_ran = $ND(0, 1, 2, …, 255);
 3 always @ (posedge clock) begin
 4 case (state)
 5 S64: state = S1;
 6 S1: state = S2;
 7 S2: state = S3;
 8 S3: state = S4;
 9 ……
10 Si: state = Si+1;
11 ……
12 S63: state = S64;
13 endcase;

 14 if (state== S1)
15 framestart = 1;
16 else
17 framestart = 0;
18 if (state == S3)
19 rx_ip_soc = 1;
20 else
21 rx_ip_soc = 0;
22 ip_empty = 1;
23 rx_ip_rd_req=1 ;
24 ctr_sz = 0;
25 ctr_id = 0;
26 npc_rst_n = 1;
27 rx_ip_data = rx_ip_data_ran;
28 if (state = S4) rx_ip_data_s4 = rx_ip_data_ran;
29 else if (state=S5) rx_ip_data_s5 = rx_ip_data_ran;
30 else if (state=S6) rx_ip_data_s6 = rx_ip_data_ran;
31 end

The correct memory addresses increment can be
specified by formulas (6), (7), (8) and (9) below. Due to
the space limitation, the CTL properties for the address
increment between S8 and S56 are not listed in here, but
they are very similar to (7) and (8).

AG(state=S7 -> ip_mem_addr_r[8:1]== rx_ip_data_s4
* ip_mem_addr_r[0]==rx_ip_data_s5[7] *
ip_mem_addr_c[8:6]==rx_ip_data_s5[6:4] *
ip_mem_addr_c[5:0]=6’b000100) (6)

AG(state=S8 -> ip_mem_addr_r[8:1]==rx_ip_data_s4 *
ip_mem_addr_r[0]==rx_ip_data_s5[7] *
ip_mem_addr_c[8:6]==rx_ip_data_s5[6:4] *
ip_mem_addr_c[5:0]=6’b000101) (7)

AG(state=S56 -> ip_mem_addr_r[8:1]==rx_ip_data_s4
* ip_mem_addr_r[0]==rx_ip_data_s5[7] *
ip_mem_addr_c[8:6]==rx_ip_data_s5[6:4] *
ip_mem_addr_c[5:0]= 6’b110101) (8)

AG(state=S57 + …… + state=S64 ->
ip_mem_addr_r[8:1]==rx_ip_data_s4 *
ip_mem_addr_r[0]==rx_ip_data_s5[7] *
ip_mem_addr_c[8:6]==rx_ip_data_s5[6:4] *
ip_mem_addr_c[5:0] = 6’b000000) (9)

Next, we verify that the data is transferred from the
transmission board to the memory with one clock cycle
delay and the memory write enable signal is asserted
during data transfer process. This sub-property involves
two signals. One is the memory write enable signal
(ip_mem_wr_en) and the other is the data output signal
(ip_mem_data). The ip_mem_wr_en signal, which should
be asserted during the data transfer period (S7 to S56), is
expressed by formulas (10) and (11) below. Also during
the data transfer period, the ip_mem_data should equal the
value of rx_ip_data with one clock cycle delay. The first
and last byte data transfers are represented by formulas
(12) and (13) below. Due to the space limitation, the CTL
properties for the rest of data transfer are not enumerated in
here, but they are very similar to (12) and (13).

Fig 5. Verilog code of Property 3 environment

Next, we divide the verification into the two steps. The
first step is to verify whether the environment represents
the assumption, and the second step is to check if the
conclusion is valid.

Step 1. Verify the assumption
The five assumptions are expressed using the following
CTL expressions:

AG(npc_rst_n=1 * ctr_id=0 * ctr_sz=0) (1)
AG(state=S1 -> ip_empty =1 * rx_ip_rd_req=1) (2)
AG(state=S3 -> rx_ip_soc=1) (3)

 - 004 -

 - 005 -

AG(state=S1 + state=S2 + … + state=S6 + state=S57
+ … + state=S64 -> ip_mem_wr_en=0) (10)

AG(state=S7 + state=S8 + … + state=S56 ->
ip_mem_wr_en=1) (11)

AG(state=S7 -> ip_mem_data==rx_ip_data_s6) (12)

AG(state=S56 -> ip_mem_data==rx_ip_data_s55) (13)

Using the established environment and combining the
property assumptions and conclusions, Property 3 is
successfully verified through model checking in VIS.
Following the above method, all other 5 properties of the
port controller have been similarly specified and verified.
Experimental results on the model checking of all 6
properties are shown in Table 2, including CPU time,
memory usage and number of BDD nodes generated. The
experiments were performed on a Sun Ultra Sparc
(300MHz/500 MB) machine.

Table 2. Model checking experiment results

Properties CPU time
(sec)

Memory
usage (MB)

BDD nodes
allocated (K)

Property 1 52 92 203,493

Property 2 256 198 284,563

Property 3 209 156 293,354

Property 4 378 201 304,731

Property 5 34 77 153,980

Property 6 76 89 197,091

5. CONCLUSION
In this paper, we have presented the modeling and

formal verification by model checking of an ATM switch
port controller. This is a real design of a
telecommunications component used in the Cambridge
Fairisle ATM network. While some specification properties
cannot be concisely expressed using single temporal logic
formulas, we have shown how we make use of an
environment state machine to enable a proper specification.
To enable the model checking process, properties are
further subdivided into a set of assumption and conclusion
subformulas which are combined by conjunction. Using
such an approach, we succeeded the model checking of all
specification properties of the port controller within the
reasonable time. The method presented could be enough in
order to verify larger designs. To this end, we may have to
apply some more advanced techniques, such as symmetry
reduction or compositional verification [5].

6. REFERENCES
[1] R. Brayton et al., “VIS: A system for Verification and

Synthesis”, Technical Report UCB/ERL M95,
Electronics Research Laboratory, University of
California, Berkeley, December, 1995.

[2] H.D. Ginsburg, “ATM Solutions for Enterprise
Internetworking”, Addison-Wesley, 1996.

[3] C. Kern and M. Greenstreet, “Formal Verification in
Hardware Design: A Survey”, ACM Trans. on Design
Automation of Electronic Systems, Vol. 4, April 1999,
pp. 123-193.

[4] I. Leslie and D. McAuley, “Fairisle: An ATM Network
for the Local Area”, ACM Communication Review,
Vol. 19, No. 4, Sep. 1991, pp. 327-336.

[5] J. Lu and S. Tahar “Practical Approaches to the
Automatic Verification of an ATM Switch Fabric
using VIS”, Proc. IEEE 8th Great Lakes Symposium on
VLSI, Lafayette, Louisiana, USA, Feb. 1998, pp. 368-
373.

[6] J. Lu, “On the formal Verification of ATM Switches”,
M.A.Sc. Thesis, Department of Electrical and
Computer Engineering, Concordia University, Canada,
May 1999.

	�

